

CHARACTERISTICS OF METABOLISM

- 1. Metabolic pathways are mostly irreversible
- 2. Every metabolic pathway has a committed first step.
- 3. All metabolic pathways are regulated.
- 4. Metabolic pathways in eukaryotic cells occur in specific cellular locations.

GLYCOLYSIS

GLYCOLYSIS

- Glycolysis comes from a merger of two Greek words:
- ➢ Glykys = sweet
- Lysis = breakdown/ splitting

It is also known as Embden-Meyerhof-Parnas pathway or EMP pathway.

INTRODUCTION

- GLYCOLYSIS is the sequence of 10 enzyme-catalyzed reactions that converts glucose into pyruvate with simultaneous production on of ATP.
- In this oxidative process, 1mol of glucose is partially oxidised to 2 moles of pyruvate.
- This major pathway of glucose metabolism occurs in the cytosol of all cell.
- This unique pathway occurs aerobically as well as anaerobically & doesn't involve molecular oxygen.

- It also includes formation of Lactate from Pyruvate.
- The glycolytic sequence of reactions differ from species to species only in the mechanism of its regulation & in the subsequent metabolic fate of the pyruvate formed.
- In aerobic organisms, glycolysis is the prelude to Citric acid cycle and ETC.
- Glycolysis is the central pathway for Glucose catabolism.

TWO PHASES OF GLYCOLYSIS

- Glycolysis leads to breakdown of 6-C glucose into two molecules of 3-C pyruvate with the enzyme catalyzed reactions being bifurcated or categorized into 2 phases:
- 1. Phase 1- preparatory phase
- 2. Phase 2- payoff phase.

PREPARATORY PHASE

- It consists of the 1st 5 steps of glycolysis in which the glucose is enzymatically phosphorylated by ATP to yield Fructose-1,6-biphosphate.
- This fructuse-1,6-biphosphate is then split in half to yield 2 molecules of 3-carbon containing Glyceraldehyde-3-phosphate/ dihyroxyacteone phosphate.

Thus the first phase results in cleavage of the hexose chain.

 This cleavage requires an investment of 2 ATP molecules to activate the glucose mole and prepare it for its cleavage into 3-carbon compound.

PAYOFF PHASE

- This phase constitutes the last 5 reactions of Glycolysis.
- This phase marks the release of ATP molecules during conversion of Glyceraldehyde-3-phosphtae to 2 moles of Pyruvate.
- Here 4 moles of ADP are phosphorylated to ATP. Although 4 moles of ATP are formed, the net result is only 2 moles of ATP per mole of Glucose oxidized, since 2 moles of ATP are utilized in Phase 1.

STEPWISE EXPLAINATION OF

GLYCOLYSIS

STEP 1: PHOSPHORYLATION

- Glucose is phosphorylated by ATP to form sugar phosphate.
- This is an irreversible reaction & is catalyzed by *hexokinase.*
- Thus the reaction can be represented as follows:

STEP 2: ISOMERIZATION

- It is a reversible rearrangement of chemical structure of carbonyl oxygen from C1 to C2, forming a Ketose from the Aldose.
- Thus, isomerization of the aldose Glucose6-phosphate gives the ketose, Fructose-6-phoshphate.

STEP 3: PHOPHORYLATION

- Here the *Fructose-6-phosphate* is phosphorylated by ATP to *fructose-1,6-bisphosphate*.
- This is an *irreversible reaction* and is catalyzed by *phosphofructokinase* enzyme.

STEP 4: BREAKDOWN

- This six carbon sugar is cleaved to produce two 3-C molecules: glyceradldehyde-3-phosphate (GAP) & dihydroxyacetone phosphate(DHAP).
- This reaction is catalyzed by Aldolase.

STEP 5: ISOMERIZATION

- Dihydroxyacetone phosphate is oxidized to form Glyceraldehyde-3-phosphate.
- This reaction is catalyzed by *triose phosphate isomerase* enzyme.

STEP 6

- 2 molecules of Glyceraldehyde-3-phosphate are oxidized.
- *Glyceraldehyde-3-phosphate dehydrogenase* catalyzes the conversion of Glyceraldehyde3-phosphate into *1,3-bisphosphoglycerate.*

Resultant reaction

<u>STEP 7</u>

- The transfer of high-energy phosphate group that was generated earlier to ADP, form ATP.
- This phosphorylation i.e. addition of phosphate to ADP to give ATP is termed as *substrate level phosphorylation* as the phosphate donor is the substrate *1,3-bisphosphoglycerate (1,3-BPG)*.
- The product of this reaction is 2 molecules of *3-phosphoglycerate.*

1,3-bisphosphoglycerate

3-phosphoglycerate

2

STEP 8

 The remaining phosphate-ester linkage in 3phosphoglycerate, is moved from carbon 3 to carbon 2, because of relatively low free energy of hydrolysis, to form *2-phosphoglycerate*(2-PG).

STEP 9: DEHYDRATION OF 2-PG

- This is the second reaction in glycolysis where a high-energy phosphate compound is formed.
- The 2-phosphoglycerate is dehydrated by the action of *enolase* to *phosphoenolpyruvate(PEP)*. This compound is the phosphate ester of the enol tautomer of pyruvate.
- This is a reversible reaction.

2-phosphoglycerate

Phosphoenol pyruvate

2

2

STEP 10: TRANSFER OF PHOSPHATE FROM PEP to ADP

- This last step is the irreversible transfer of high energy phosphoryl group from phosphoenolpuruvate to ADP.
- This reaction is catalyzed by *pyruvate kinase.*
- This is the **2**nd substrate level phosphorylation reaction in glycolysis which yields ATP.
- This is a non-oxidative phosphorylation reaction.

Phosphoenolpyruvate

2

OVERALL BALANCE SHEET OF GLYCOLYSIS

• Each molecule of glucose gives 2 molecules of Glyceraldehyde-3-phosphate. Therefore, the total input of all 10 reactions can be summarized as:

Glucose + 2ATP+ 2Pi+ 2NAD⁺+ 2H⁺+ 4ADP

2Pyruvate+ 2H⁺+ 4ATP+ 2H₂O+ 2NADH+ 2ADP

On cancelling the common terms from the above equation, we get the net equation for Glycolysis:

Glucose+ 2Pi+ 2ADP+ 2NAD+

2Pyruvate+ 2NADH+ 2ATP+ 2H⁺ + 2H₂O

THUS THE SIMULTANEOUS REACTIONS INVOLVED IN GLYCOLYSIS ARE:

- **Glucose is oxidized to Pyruvate**
- > NAD⁺ is reduced to NADH
- > ADP is phosphorylated to ATP

• ENERGY YIELD IN GLYCOLYSIS:

STEP NO.	REACTION	CONSUMPTION of ATP	GAIN of ATP
1	Glucose —> glucose-6-phosphate	1	-
3	Fructose-6-phosphate \longrightarrow fructose-1,6-biphosphate	1	-
7	1,3-diphosphoglycerate> 3-phosphoglycerate	_	1x2=2
10	Phosphoenolpyruvate \longrightarrow pyruvate	-	1x2=2
		2	4
		Net gain of ATP=4-2= 2	

-- REGULATION OF GLYCOLYSIS --

Three irreversible kinase reactions primarily drive glycolysis forward.

hexokinase or glucokinase
phosphofructokinase
pyruvate kinase

Three of these enzymes regulate glycolysis as well.

2. HEXOKINASE

Phosphorylation of glucose.

Inhibited by its product, glucose 6-phosphate, as a response to slowing of glycolysis

Not GLUCOKINASE – as discussed

2. PHOSPHOFRUCTOKINASE major regulatory enzyme, rate limiting for glycolysis an allosteric regulatory enzyme. measures adequacy of energy levels. **Inhibitors: ATP** by decreasing fructose 6-phosphate binding and citrate both indicate high energy availability

Activators: ADP, AMP, low energy

AMP and ADP reverse ATP inhibition

And another activator

Fructose 2,6 bisphosphate is a very important regulator, controlling the relative flux of carbon through glycolysis versus gluconeogenesis. - It also couples these pathways to hormonal regulation.

3. PYRUVATE KINASE PEP + ADP→ pyruvate + ATP An allosteric tetramer

 inhibitor: ATP
inhibitors: acetyl CoA and fatty acids (alternative fuels for TCA cycle)

 activator: fructose 1,6bisphosphate ("feed-forward") Phosphorylation (inactive form) and dephosphorylation (active form) under hormone control.

 Also highly regulated at the level of gene expression ("carbohydrate loading")